Why Data Export Matters
Effective data export is the foundation of any successful content audit. It enables you to analyze content at scale, identify patterns, and make data-driven decisions. Whether you're working with a CMS, analytics platform, or custom database, proper export techniques ensure you capture all necessary information for comprehensive analysis.
Key Fact: Organizations that effectively export and analyze their content data are 3x more likely to identify improvement opportunities that drive measurable ROI.
Data Export Framework
1
Define Requirements
Identify needed data points
- Content metadata
- Performance metrics
- User engagement data
- Technical attributes
2
Choose Export Method
Select appropriate technique
- Direct database queries
- API extraction
- Plugin/extension tools
- Manual export options
3
Extract Data
Execute export process
- Run export scripts
- Validate completeness
- Handle errors
- Document process
4
Transform & Clean
Prepare for analysis
- Standardize formats
- Remove duplicates
- Handle missing data
- Enrich with metadata
5
Structure & Store
Organize for access
- Create data schema
- Set up storage system
- Implement versioning
- Enable collaboration
6
Analyze & Report
Generate insights
- Create pivot tables
- Build visualizations
- Identify patterns
- Share findings
CMS Data Export Methods
WordPress Export
- Native Export: Tools → Export (XML format)
- WP All Export: Advanced CSV/XML export with custom fields
- Database Query: Direct MySQL queries for custom extraction
- REST API: Programmatic access to all content types
Best For: Complete content inventory with metadata
🟦 Drupal Export
- Views Data Export: Module for CSV/XML/JSON export
- Migrate API: Structured content extraction
- Drush Commands: CLI-based bulk export
- Database Dump: Complete SQL export with filtering
Best For: Complex content relationships and taxonomies
🟪 Contentful/Headless CMS
- Content Delivery API: RESTful API for published content
- Content Management API: Full CRUD operations
- GraphQL API: Flexible query-based extraction
- Export Tools: CLI tools for bulk export
Best For: Structured content with rich metadata
🟨 SharePoint Export
- Export to Excel: List and library export functionality
- PowerShell Scripts: Automated bulk extraction
- Migration Tools: SharePoint Migration Tool (SPMT)
- Graph API: Microsoft Graph for programmatic access
Best For: Enterprise document management systems
Analytics Data Export
Google Analytics 4 (GA4)
- BigQuery Export: Raw event-level data streaming
- Data API: Programmatic access to aggregated data
- Report Export: PDF/CSV from interface
- Google Sheets Add-on: Direct integration
Setup Command: Admin → BigQuery Linking → Configure
Search Console
- Performance Export: CSV download (1000 row limit)
- API Access: Full data via Search Console API
- Bulk Export: Up to 16 months of data
- BigQuery Integration: Via third-party connectors
API Limit: 50,000 rows per request
Adobe Analytics
- Data Warehouse: Custom report builder
- Report Builder: Excel plugin for data extraction
- Analytics API 2.0: RESTful API access
- Data Feeds: Raw clickstream data export
Format Options: CSV, TSV, JSON, XML
Export File Formats
CSV (Comma-Separated Values)
- Universal compatibility
- Small file size
- Excel/Sheets compatible
- No data types
- Limited to flat structure
JSON (JavaScript Object Notation)
- Preserves data types
- Nested structures
- API-friendly
- Larger file size
- Requires parsing
XML (Extensible Markup Language)
- Self-documenting
- Complex relationships
- Schema validation
- Verbose format
- Processing overhead
XLSX (Excel Workbook)
- Multiple sheets
- Formatting preserved
- Formulas included
- Size limitations
- Proprietary format
BigQuery Export Setup (GA4)
Setup Process
- Create GCP Project: Set up Google Cloud Platform account
- Enable BigQuery API: Activate in GCP Console
- Link GA4 Property: Admin → BigQuery Linking
- Configure Export: Choose streaming or daily export
- Set Permissions: Grant necessary IAM roles
- Verify Data Flow: Check tables in BigQuery console
BigQuery Schema
- Events Table: All user interactions and custom events
- Users Table: User-level aggregated data
- Items Table: E-commerce product data
- Pseudo Tables: Intraday streaming data
Cost: ~$5/million events for storage
Sample Queries
-- Page views by title
SELECT
(SELECT value.string_value FROM UNNEST(event_params)
WHERE key = 'page_title') AS page_title,
COUNT(*) as views
FROM `project.dataset.events_*`
WHERE event_name = 'page_view'
AND _TABLE_SUFFIX BETWEEN '20240101' AND '20240131'
GROUP BY page_title
ORDER BY views DESC
Data Transformation Best Practices
Data Cleaning
- Remove HTML tags from text
- Standardize date formats
- Normalize URLs (trailing slashes)
- Handle encoding issues
Data Enrichment
- Add content categories
- Calculate word counts
- Extract meta information
- Append performance metrics
Data Validation
- Check for missing values
- Verify data types
- Validate against source
- Test sample records
Data Documentation
- Create data dictionary
- Document transformations
- Note assumptions made
- Version control changes
Common Export Challenges
Rate Limiting
Problem: API request limits blocking bulk export
Solution: Implement exponential backoff, batch requests, use pagination
Data Size Limits
Problem: Export files too large to handle
Solution: Chunk exports by date range, use streaming, compress files
Format Inconsistencies
Problem: Different systems use different formats
Solution: Create transformation scripts, use ETL tools, standardize schemas
Missing Relationships
Problem: Lost connections between content pieces
Solution: Export relationship tables, maintain foreign keys, document links
Permission Issues
Problem: Insufficient access to export all data
Solution: Request elevated permissions, work with IT, use service accounts
Real-time Sync
Problem: Need up-to-date data continuously
Solution: Set up webhooks, use streaming APIs, implement CDC
Export Automation Scripts
Python Export Example
import pandas as pd
import requests
from datetime import datetime
def export_content_data(api_endpoint, api_key):
"""Export content data from API to CSV"""
headers = {'Authorization': f'Bearer {api_key}'}
all_data = []
page = 1
while True:
response = requests.get(
f'{api_endpoint}?page={page}',
headers=headers
)
data = response.json()
if not data['results']:
break
all_data.extend(data['results'])
page += 1
# Convert to DataFrame
df = pd.DataFrame(all_data)
# Add export metadata
df['export_date'] = datetime.now()
# Export to CSV
filename = f'content_export_{datetime.now():%Y%m%d}.csv'
df.to_csv(filename, index=False)
return filename SQL Export Query
-- Export content with metrics
SELECT
p.ID,
p.post_title,
p.post_date,
p.post_status,
p.post_type,
pm.meta_value as word_count,
COUNT(c.comment_ID) as comment_count
FROM wp_posts p
LEFT JOIN wp_postmeta pm
ON p.ID = pm.post_id
AND pm.meta_key = 'word_count'
LEFT JOIN wp_comments c
ON p.ID = c.comment_post_ID
WHERE p.post_type IN ('post', 'page')
AND p.post_status = 'publish'
GROUP BY p.ID
INTO OUTFILE '/tmp/content_export.csv'
FIELDS TERMINATED BY ','
ENCLOSED BY '"'
LINES TERMINATED BY '
';Data Storage Solutions
Cloud Storage
- Google Cloud Storage
- Amazon S3
- Azure Blob Storage
- Dropbox Business
Data Warehouses
- Google BigQuery
- Amazon Redshift
- Snowflake
- Azure Synapse
Databases
- PostgreSQL
- MySQL
- MongoDB
- Elasticsearch
Collaboration Tools
- Google Sheets
- Airtable
- Notion databases
- Microsoft 365
Export Checklist
Pre-Export Checklist
- Define all required data fields
- Verify access permissions
- Test export on small sample
- Estimate data volume and time
- Prepare storage location
- Document export parameters
During Export
- Monitor progress and errors
- Log all activities
- Validate data integrity
- Handle exceptions gracefully
- Create backup of raw export
Post-Export
- Verify record counts
- Check for missing data
- Validate against source
- Document any issues
- Create data dictionary
- Set up regular updates
Need Help with Data Export?
Let's set up efficient data export processes for your content audit needs.